
NASA-TM-I08114 //Y z_,p;:-3 ---2/)_

/ss3pC_

MATE: The Multi-Agent
Test Environment

CINDY L. MASON

ARTIFICIAL INTELLIGENCE RESEARCH BRANCH

MS 269-2

NASA AMES RESEARCH CENTER

MOFFETT FIELD, CA 94035-1000

f

(NASA-TM-IO8114)

MULTI-AGENT I_ST

(NASA) 12 p

MATE: THE

ENVIRONMENT

N93-15292

Uncl,_s

G3/63 0135326

=

N)_SA Ames Research Center.

- ---_-- A_tifi-ciaJ]n"celi igenceqR-_earCh B ra nch

-!'-L JJ i_ -£i_ _- -_£L-] --

Technical Report FIA-92-25

m

Ju_ 1992

Lt

MATE: The Multi-Agent
Test Environment

Cindy L. Mason

AI Research Branch, Mail Stop" 269-2

NASA Ames Research Center

Moffett Field, CA 94035 U.S.A.

_ mason@chaos.arc.nasa.gov

2,
.7

Abstract

In this report we present the Multi-Agent Test Environment, MATE.

MATE is a collection of experiment management tools for assisting in

the design, testing, and evaluation of distributed problem-solvers. It

provides the experimenter with an automated tool for executing and

monitoring experiments choosing among rule bases, number of agents,

communication strategies, and inference engines. Using MATE the ex-

perimenter can run a series of distributed problem-solving experiments

without human intervention.

MATE: The Multi-Agent Test

Cindy L. Mason

Environment

1 Introduction

The MATE (Multi-Agent Test Environment) testbed is a collection of experiment

management tools for the design, testing, and evaluation of distributed problem-

solving experiments. Using MATE the experimenter can run a series of distributed

problem-solving experiments without human intervention. MATE tools use several

UNIX-based workstations networked together via ethernet in a large local-area net-

work. Each workstation runs a single agent that communicates via the local-area

network, except for one workstation that serves as the MATE control center and corn-

- munication server (see figure 1). Using MATE, the experimenter creates a problem-

solving setting by choosing the rule bases, number of agents, inference engine, and

communication strategy. Thus, MATE provides a platform for an experimenter to

investigate alternative reasoning, communication and control strategies.

The role of MATE in solving a particular problem-solving instance is depicted

in figure 2. The multi-agent software can be viewed in terms of 3 layers, the agent,

1

Figure I: The MATE testbed architectureconsistsof the control and monitoring

program, AUTO-MATE, the communications server,and one or more agents, inter-

connected by an ethernet.

the communications layer,and MATE. An "agent" iscomposed of a lispinterpreter,

inferenceengine, rule base, data set,and a communications interface.

The communication layer provides four services to the agents: 1) point-to-point,

-multi-cast, and broadcast message delivery, 2) transparent translation between sym-

bolic agent name and physical workstation address, 3) experiment start synchroniza-

tion, and 4) experiment termination noti£cation.

Figure 2: An agent consists of the individual Agent layer, a Communications layer,

and the MATE control layer.

2 MATE Tools

MATE tools automate much of the work involved in monitoring and organizing the

execution of the distributed problem solver. MATE's primary control tool is "AUTO-

MATE" which finds a set of eligible machines and executes preconfigured experimental

trials. Alternatively, experiments may be run manually via the program "LAUNCH-

MATE", which may be selected from a menu in the X-windows user interface (see

figure 3), or simply typing the program name after the UNIX command prompt.

Using AUTO-MATE, each experimental trial is automatically monitored for net-

work, machine, or software failure and is restarted if necessary and possible. The

results may be reviewed at the time the experiments are run or much later, as each

trial log is automatically archived for later analysis. These logs are used not only for

gathering performance information but in debugging the distributed problem solver

as well. ._ .,_

3

Figure 3: The Manual MATE UserInterface

4

OR,_NAL PA_ IS
OF POOR QUALITY

There are three phases to running experiments: 1) Experiment configuration, 2)

network resource allocation, and 3) experiment execution and recording. Each of

these phases is described below.

2.1 Experimental Configuration

Each experiment must be configured according to number of agents (and therefore the

number of machines to be used), communication policy, inference engine, rule bases

and data sets. The configuration of experiments is done manually, by specifying a

collection of invocation parameters to MATE tools. Currently, communication poli-

cies may be selected as broadcast, undirected-request, and directed-request. Three

inference engines may be selected: 1) single - for debugging a single agent with no

communication 2) non-tms - for debugging multiple agents without truth mainte-

nance systems 3) full-engine - for running multiple agents with truth maintenance

systems. Any number of rule bases and data sets may be created and specified for

an experimental trial. In addition, new inference engines and communication policies

may be added to the system by simply building the new software and appending the

list of engine types (or communication policies) in the appropriate MATE tools.

5

2.2 Network Resource Allocation

In the network resource allocation phase, workstations in the local area network

are selected for the experiments by the program, "NOSE". NOSE is called either

from AUTO-MATE or run manually. NOSE consults a list of known workstations

on the local area network, and selects a machine for each agent. NOSE tests each

workstation to determine if it: 1)has the proper file system and account access to

run the experiments, 1 2) has the memory resources to run the lisp interpreter, 3)

has sufcient CPU power and 4) the system is not heavily loaded by other users

(the load threshold is adjustable.) NOSE produces a list of suitable workstations

once per experimental session or whenever a negative change in usage patterns of the

workstations is detected during the runs. This was found to be quite sufficient, and

much less expensive than testing for workstation availability before each trial.

tt

2.3 Experiment Execution and Recording

Once the experiment configuration is in place, and a list of capable machines is

created, the distributed problem solver may be initiated through the AUTO-MATE

control and monitoring program (implemented as a UNIX csh program), or manually

via menu selections (see figure 5.3). Typically, manual invocation of the system is

1In this implementation we use NFS, the UNIX-based network file system, for setting up, control-
ling, and recording the experiments. Other implementation choices are possible and will not affect
the experimental results. The agents communicate between themselves via the communication server
which is independent of NFS.

performedwhile debuggingnew rule sets,inferenceengines,etc., asthe experimenter

is given finer control over executionand can interact with the lisp interpreter, run

single step, and watch rule tracings and assumptions data base creation, etc.

The mMn purpose of AUTO-MATE is to execute a problem-solving system over

a variety of problem scenarios, making sure everything goes smoothly. This includes:

• ensuring agent logs are written properly

• ensuring that all agents are up and running - restarting agents whenever error

conditions allow

• verifying that no agent terminates prematurely

• detecting when an experiment is over

• detecting error conditions

For each experimental trial, AUTO-MATE begins by copying the proper infer-

ence engine initialization file and rule-sets (specified by invocation parameters) for

this particular trial into place. AUTO-MATE then runs the communication server,

watching to ensure it starts successfully 2. Should the server have any errors, AUTO-

MATE will persistently re-start the server until it runs successfully. At this point

each agent is then initiated on the remote workstations using the UNIX remote shell

execution command, rsh. As a result of the rsh, a UNIX csh script is executed on

each machine that, after killing off any other agents found on the machine, will start

2The communications server is needed for instrumentating the experiment, and will not be neces-

sary in a deployed system. However, agents must either address the problem of how to synchronize
problem solving, or have the ability to maintain results on multiple problem instances.

7

up common lisp, thus loading in and executing the agent process. This part of the

experiment system is subject to several types of failures (e.g. a machine has crashed,

the network went down, there is not enough memory available to start lisp) so AUTO-

MATE closely monitors log files for the agents. If necessary, AUTO-MATE will try

to restart one or more agents that did not start, and may re-run NOSE looking for

other available machines.

The UNIX csh script invoked on each workstation starts the process to build

and execute an agent. The remote shell script first outputs a recognizable welcome

message to the log file. This informs the AUTO-MATE monitoring process that

agent initialization has begun successfully. After the message is output, the remote

script invokes the lisp interpreter and reads the initialization file, loading the inference

engine and rule and data-set, and begins execution of the remote agent. At this point

the lisp agent makes a connection with the communication server and waits for a

synchronization message to start processing inferences. This synchronization message

signals that all agents are ready to begin. During problem solving, agents write many

intermediate results and runtime statistics (such as size of working memory, number

of messages sent or received, CPU times, and so on) to the log file as each step of

the processing proceeds. When the agent can make no further inferences with its

current data base, it enters a loop and waits for any messages that could trigger

further inferences. A recognizable message is written to the log file when this loop is

entered.

Since the communication server must be prepared to process broadcast messages,

and the names and addresses of the agents are not known to the server until a connec-

tion is made, all agents are required to connect with the server before any messages

are delivered. The communications server establishes port connections for agents, us-

ing streams, and waits for a connection message from each agent. As connections are

made, the server builds up its name translations table. Once all connections are made,

the server sends a "Gentlemen start your inference engines" synchronization message

to all agents. This synchronization procedure prevents fast agents from queueing up

large numbers of incoming messages in the server before they can be delivered to the

agents. Without this synchronization, a single slow agent will delay the delivery of

messages to all agents.

When all agents are finished processing and are waiting for further messages, the

AUTO-MATE monitoring process detects that the trial is complete (by recognizing

that this pattern is at the end of each log file for a fixed time period) and terminates

the communication server and the agents. The log files for each of the agents and the

communication server are copied into the proper place in the directory structure for

that experimental trial, and the next trial is started.

3 Summary

The MATE (Multi-Agent Test Environment) testbed is a collection of experiment

management tools for the design, testing, and evaluation of distributed problem-

solving experiments. These tools use several UNIX-based workstations networked

together via ethernet in a large local-area network. MATE can be used to run dis-

tributed experiments automatically and monitors experiment execution and comple-

tion.

10

